EPGTMO Ponfiguration - an "address" for the electrons in an atom			
An Orbital is: How do we describe orbitals? 1. 2. 3. 4.			
Different orbitals are in different energy levels	Different orbitals have different shapes	Different orbitals have different orientations	Each orbital is only allowed to have two e-s
Where do e-live? What is the address for one? Electron configuration for an electron in the second energy level, inside a \boldsymbol{p} shaped orbital that is lined up on State --------> Energy level the \mathbf{x} axis and is a spin up electron:			
They can get REALLY long$\begin{aligned} & 1 s_{+1 / 2}, 1 s_{-1 / 2}, 2 s_{+1 / 2}, 2 s_{-1 / 2} \\ & 2 p_{x+1 / 2}, 2 p_{x-1 / 2}, 2 p_{y+1 / 2} \\ & 2 p_{y-1 / 2}, 2 p_{z+1 / 2}, 2 p_{z-1 / 2} \end{aligned}$		Want to describe wher Shrink it down and only 1. 2. 3. Example:	e -in an atom were?
Steps to finding all the electrons 1. Pick an \qquad 2. Find the number of \qquad 3. Start putting electrons into the \qquad Use an \qquad 4. List which \qquad you used and \qquad electrons in each one			
Rules for putting electrons in an orbital diagram:			
1. Aufbau Principle An electron occupies the lowest energy orbital that it can. Means:2. Pauli Exclusion Principle 3. Hunds Rule No two es in the same atom can have the same set of 4 quantum numbers Orbitals of equal energy are each occupied by one e^{-}before any orbital is occupied by a second e^{-}. Means: Means:			

